THE PRESSUREMETER:
SOME CONTRIBUTIONS TO FOUNDATION ENGINEERING

Jean-Louis BRIAUD
President of ISSMGE
Professor, Texas A&M University, USA

• TEXAM vs Menard Pressuremeter
• PMT results vs Other Tests Results
• Shal. Found.: Scale & Embedment Effect?
• Shal. Found.: Load-Settlement Curve
• Deep Found.: Lat. Load, Reference Case
• Deep Found.: Lat. Load, Complex Cases
• Deep Found.: Vert. Load, Downdrag
• Future Work
“Everything should be made as simple as possible but not one bit simpler than that”

Albert Einstein (Safir and Safire, 1982)
USEFUL CORRELATIONS
SAND (36 sites)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>E_0 (kPa)</th>
<th>E_R (kPa)</th>
<th>p_L (kPa)</th>
<th>q_c (kPa)</th>
<th>f_s (kPa)</th>
<th>N (bl/30 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.125</td>
<td>8</td>
<td>1.15</td>
<td>57.5</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1</td>
<td>64</td>
<td>6.25</td>
<td>312.5</td>
<td>2174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.125</td>
<td>0.0156</td>
<td>1</td>
<td>0.11</td>
<td>5.5</td>
<td>47.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.87</td>
<td>0.16</td>
<td>9</td>
<td>1</td>
<td>50</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0174</td>
<td>0.0032</td>
<td>0.182</td>
<td>0.02</td>
<td>1</td>
<td>9.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0026</td>
<td>0.00046</td>
<td>0.021</td>
<td>0.0021</td>
<td>0.104</td>
<td>1</td>
</tr>
</tbody>
</table>

CLAY (44 sites)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>E_0</th>
<th>E_R</th>
<th>p_L</th>
<th>q_c</th>
<th>f_s</th>
<th>S_d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.278</td>
<td>14</td>
<td>2.5</td>
<td>56</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.6</td>
<td>1</td>
<td>50</td>
<td>13</td>
<td>260</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.071</td>
<td>0.02</td>
<td>1</td>
<td>0.2</td>
<td>4</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.40</td>
<td>0.077</td>
<td>5</td>
<td>1</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.079</td>
<td>0.0038</td>
<td>0.25</td>
<td>0.05</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.010</td>
<td>0.0033</td>
<td>0.133</td>
<td>0.037</td>
<td>0.625</td>
<td>1</td>
</tr>
</tbody>
</table>
VERY POOR CORRELATIONS

SHALLOW FOUNDATIONS: SCALE & EMBEDMENT EFFECT?
THIS BEARING CAPACITY EQUATION RARELY WORKS

\[p_u = cN_c + \frac{1}{2} \gamma BN \gamma + \gamma DN_q \]

\[p_u = \frac{1}{2} \gamma BN \gamma \]
3mx3m Footing Load Tests up to 1200 tons
Texas A&M National Site

Jean-Louis Briaud – Texas A&M University
THIS BEARING CAPACITY EQUATION RARELY WORKS

\[p_u = cN_c + \frac{1}{2} \gamma B N \gamma + \gamma D N q \]

\[p_u = \frac{1}{2} \gamma B N \gamma \]
THIS BEARING CAPACITY EQUATION ALWAYS WORKS

\[p_u = k r \]

\[r = p_L, q_c, N, s_U \]

Jean-Louis Briaud – Texas A&M University
SHALLOW FOUNDATIONS:
LOAD SETTLEMENT CURVE
LOAD SETTLEMENT CURVE METHOD

\[p_f = \Gamma p_p \]
\[s/B = 0.24 \Delta R/R \]
PROBLEM: A bridge abutment rests on a shallow foundation 15 m long and 3 m wide. The foundation is subjected to a vertical and centered load equal to 9000 kN. The lateral earth pressure generates a load of 900 kN on the back of the abutment. The resultant of the two forces has an eccentricity equal to 0.2 m. The soil is a sand characterized by an average pressuremeter curve.

SOLUTION: Load-Settlement Curve Method

\[
Q_u(t)/Q_u(t_o) = (t/t_o)^n
\]

\[
s(t)/s(t_o) = (t/t_o)^n
\]

- \(n = 0.01\) to \(0.03\) in sands
- \(n = 0.02\) to \(0.08\) in clays

LONG TERM VERTICAL LOAD

\[
Q_u(t)/Q_u(t_o) = (t/t_o)^n
\]

\[
s(t)/s(t_o) = (t/t_o)^n
\]

- \(n = 0.01\) to \(0.03\) in sands
- \(n = 0.02\) to \(0.08\) in clays
n VALUES FROM PMT TESTS

\[\frac{\Delta R(t)}{\Delta R(t_0)} = \left(\frac{t}{t_0} \right)^{-n} \]

\[n = -\log\left(\frac{\Delta R(t)}{\Delta R(t_0)} \right) / \log\left(\frac{t}{t_0} \right) \]

n = 0.01 to 0.03 in sands
n = 0.02 to 0.08 in clays
LONG TERM SETTLEMENT

\[\frac{s(t)}{s(t_0)} = \left(\frac{t}{t_0} \right)^n \]

\[t = 50 \text{ years} \]
\[t_0 = 5 \text{ minutes} \]
\[n = 0.03 \]

\[\frac{s(t)}{s(t_0)} = \left(\frac{50 \times 365 \times 24 \times 60}{5} \right)^{0.03} \]

\[s(50 \text{ years})/s(5 \text{ minutes}) = 1.59 \]
Ultimate Bearing Capacity

\[P_L = 680 \text{ kPa at 5 m depth} \]

\[S_u = 100 \text{ kPa at shallow depth} \]

Total pressure at 5 m = 224 kPa
Net pressure at 5 m = 141 kPa
Elastic Settlement

\[E_0 = 30 \text{ Mpa}, \ B = 38 \text{ m}, \ p = 141 \text{ kPa}, \ \gamma = 0.35 \]
\[S(t_0) = 0.88(1 - 0.35^2) \times 141 \times 38 / 30000 = 138 \text{ mm} \]

Long Term Settlement

\[s(t)/s(t_0) = (t/t_0)^n \]
\[s(t_0) = 138 \text{ mm}, \ t = 70 \text{ yrs}, \ t_0 = 5 \text{ min}, \ n = 0.045 \]
\[S(70 \text{ years}) = 138 (70 \times 365 \times 24 \times 60 / 5)^{0.045} \]
\[S(70 \text{ years}) = 325 \text{ mm} \]
LATERAL LOAD ON PILES: REFERENCE CASE

Jean-Louis Briaud – Texas A&M University

LATERAL LOAD-DEFLECTION CURVE

LOAD
H_{ou}/F

DEFLECTION

SETTLEMENT

Jean-Louis Briaud – Texas A&M University
ULTIMATE HORIZONTAL LOAD, H_{ou}

$$H_{ou} = \frac{3}{4} \ p_l \ B \ D_v$$

p_l = limit pressure from PMT
B = projected pile width
$D_v = (\pi/4) \ l_o$ with $l_o = (4EI / K)^{1/4}$ for $L > 3 \ l_o$
$D_v = L/3$ for $L < l_o$
E = modulus of pile material
I = moment of inertia of pile
$K = 2.3 \ E_o$
E_o = PMT first load modulus of soil
L = pile length
HORIZONTAL DISPLACEMENT $y_o @ H_{ou}/3$

$$y_o = \frac{2}{L} \frac{H_o}{l_o} K \quad \text{for} \quad L > 3l_o$$

$$y_o = \frac{4}{L} \frac{H_o}{K} \quad \text{for} \quad L < l_o$$

$H_o = H_{ou}/3$ = horizontal load at ground surface
$K = 2.3 \ E_o$ = horizontal modulus (line load/deflection)
INTERACTION DIAGRAM FOR COMBINED HORIZ. LOAD AND OVERTURNING MOMENT

ANY COMBINATION OF H AND M ON THE DIAGRAM GIVES THE SAME DEFLECTION
LATERAL LOAD ON PILES: COMPLEX CASES

\[\frac{H(t)}{H_0(t)} = \left(\frac{t}{t_0}\right)^n \]

\[\frac{y_0(t)}{y_0(t_0)} = \left(\frac{t}{t_0}\right)^n \]

\(n = 0.01 \) to \(0.03 \) in sands
\(n = 0.02 \) to \(0.08 \) in clays
n VALUES FROM PMT TESTS

\[\frac{\Delta R(t)}{\Delta R(t_0)} = \frac{(t/t_0)^n}{\log(t/t_0)} \]

n = \frac{-\log(\Delta R(t)/\Delta R(t_0))}{\log(t/t_0)}

n = 0.01 to 0.03 in sands
n = 0.02 to 0.08 in clays

Jean-Louis Briaud – Texas A&M University
CYCLIC LATERAL LOAD

\[y_N = y_1 N^a \]

\(a \) averages 0.1 for clays (one way and two way)

\(a \) averages 0.08 for sands under one way loading

\(a \) averages 0 for sands under two way loading

\[\frac{\Delta R_N}{\Delta R_1} = N^a \]

\(a = \log \left(\frac{\Delta R_N}{\Delta R_1} \right) / \log N \)

PMT only applicable to one way cyclic loading
Jean-Louis Briaud – Texas A&M University
LATERAL LOAD NEAR A TRENCH
$H_{\text{trench}} = \lambda H_{\text{no trench}}$
Acceleration of truck

Vehicle Acceleration
Impact Force (X, Y and Z directions)

50ms Vehicle Force

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>X-dir</th>
<th>Y-dir</th>
<th>Z-dir</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Full-scale K-12 Test and Numerical simulation

(LS-DYNA) Drucker-Prager $\gamma = 21$ kN/m2, $E = 50$ MPa, $c = 20$ kPa, $\phi = 40^\circ$, $\psi = 20^\circ$
3m embedded Single Post in Very Dense Sand

Drucker-Prager $\gamma = 22$ kN/m3, $E = 32$ MPa, $c = 4$ kPa, $\phi = 40^\circ$, $\psi = 15^\circ$

Soil pressure (x-direction)

Drucker-Prager $\gamma = 22$ kN/m3, $E = 32$ MPa, $c = 4$ kPa, $\phi = 40^\circ$, $\psi = 15^\circ$
Numerical Simulation Matrix - Single post in sand

<table>
<thead>
<tr>
<th>Num</th>
<th>Energy level</th>
<th>Soil Strength</th>
<th>E (Mpa)</th>
<th>γ (kN/m³)</th>
<th>φ</th>
<th>ψ (kPa)</th>
<th>Depth</th>
<th>Remark</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K-12 V. Dense</td>
<td>50</td>
<td>21</td>
<td>40</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>Akram</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>-5</td>
<td>4</td>
<td>3</td>
<td>OK</td>
<td>contact v1 NG</td>
</tr>
<tr>
<td>7</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>OK</td>
<td>contact v3 B</td>
</tr>
<tr>
<td>8</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>contact v3 OK</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>K-12 V. Dense/Dense</td>
<td>20</td>
<td>20.6</td>
<td>37</td>
<td>6</td>
<td>3.3</td>
<td>6</td>
<td>contact v2 OK</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K-12 V. Dense/Dense</td>
<td>20</td>
<td>20.6</td>
<td>37</td>
<td>6</td>
<td>3.3</td>
<td>5</td>
<td>contact v2 OK</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>K-12 V. Dense/Dense</td>
<td>20</td>
<td>20.6</td>
<td>37</td>
<td>6</td>
<td>3.3</td>
<td>4</td>
<td>contact v2 OK</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K-12 V. Dense/Dense</td>
<td>20</td>
<td>20.6</td>
<td>37</td>
<td>6</td>
<td>3.3</td>
<td>3.5</td>
<td>contact v2 OK</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>K-12 V. Dense/Dense</td>
<td>20</td>
<td>20.6</td>
<td>37</td>
<td>6</td>
<td>3.3</td>
<td>3</td>
<td>contact v2 OK</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>K-12 V. Dense/Dense</td>
<td>20</td>
<td>20.6</td>
<td>37</td>
<td>6</td>
<td>3.3</td>
<td>2.5</td>
<td>contact v2 OK</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>K-12 V. Dense/Dense</td>
<td>20</td>
<td>20.6</td>
<td>37</td>
<td>5</td>
<td>2</td>
<td>3.5</td>
<td>contact v2 OK</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>K-12 V. Dense</td>
<td>32</td>
<td>22</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

Design Chart For Single Post in Sand
Pile Ult. Capacity
\[Q_u = 706 + 1000 \]
\[Q_u = 1706 \text{ kN} \]

Assume Neutral Pt.

\[w_p = w_s \]

Find Load Distrib.

\[Q_t + Q_d = Q_p + Q_f \]

Calculate Pile Mmt.

\[w_p \neq w_s \]
TIEBACK WALLS

EARTH PRESSURE COEF. Vs MOVEMENT / HEIGHT
So what!

Too complicated!

THE PREBORING PRESSUREMETER

DISADVANTAGES

- Influence of borehole quality
- Uncontrolled drainage
- Limited use for slopes and walls
THE PREBORING PRESSUREMETER

ADVANTAGES

• Can be done in many soils
• Gives in situ stress strain curve
• In situ “load test”
• Inexpensive equipment
• Quality of test from shape of curve
• Laterally loaded piles
• Shallow foundations
• End bearing piles